Latent tree models for hierarchical topic detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Tree Models for Hierarchical Topic Detection

We present a novel method for hierarchical topic detection where topics are obtained by clustering documents in multiple ways. Specifically, we model document collections using a class of graphical models called hierarchical latent tree models (HLTMs). The variables at the bottom level of an HLTM are observed binary variables that represent the presence/absence of words in a document. The varia...

متن کامل

Progressive EM for Latent Tree Models and Hierarchical Topic Detection

Hierarchical latent tree analysis (HLTA) is recently proposed as a new method for topic detection. It differs fundamentally from the LDA-based methods in terms of topic definition, topic-document relationship, and learning method. It has been shown to discover significantly more coherent topics and better topic hierarchies. However, HLTA relies on the Expectation-Maximization (EM) algorithm for...

متن کامل

Topic Browsing for Research Papers with Hierarchical Latent Tree Analysis

Academic researchers often need to face with a large collection of research papers in the literature. This problem may be even worse for postgraduate students who are new to a field and may not know where to start. To address this problem, we have developed an online catalog of research papers where the papers have been automatically categorized by a topic model. The catalog contains 7719 paper...

متن کامل

Document Generation with Hierarchical Latent Tree Models

In most probabilistic topic models, a document is viewed as a collection of tokens and each token is a variable whose values are all the words in a vocabulary. One exception is hierarchical latent tree models (HLTMs), where a document is viewed as a binary vector over the vocabulary and each word is regarded as a binary variable. The use of word variables allows the detection and representation...

متن کامل

Latent Topic Models for Hypertext

Latent topic models have been successfully applied as an unsupervised topic discovery technique in large document collections. With the proliferation of hypertext document collection such as the Internet, there has also been great interest in extending these approaches to hypertext [6, 9]. These approaches typically model links in an analogous fashion to how they model words the document-link c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2017

ISSN: 0004-3702

DOI: 10.1016/j.artint.2017.06.004